Galloping colts, fetal feelings and reassuring regulations – Putting animal welfare science into practice

Professor David J Mellor
Animal Welfare Science and Bioethics Centre
Massey University, Palmerston North, New Zealand

D.J.Mellor@massey.ac.nz

Collaborating Centre for Animal Welfare Science and Bioethical Analysis: Foundation Partner
Major Points

• Introduction
 – Galloping colts – 1967
 – Animal welfare science – from 1990
 – Questions about fetal ‘suffering’ – from 1999

• Fetal feelings – i.e. ‘experienced’ sensations
 – The requirement for both sentience and consciousness

• Neurological development in relation to birth
 – Normal patterns – EEG and critical connections
 – Species differences – Exceptionally & Moderately Immature, Mature
 – What the evidence suggests
 – Fail-safe ‘emergency’ mechanism

• Reassuring regulations
 – Protecting fetal welfare during commercial slaughter of livestock

• Concluding remarks
Present talk based on the following papers:

Introduction:

- **Galloping colts - 1967**
 - Donald Barron’s question
 - Fetal and neonatal physiology – biomedical literature
 - Context: causes and prevention of neonatal lamb mortality
Introduction:

- Galloping colts - 1967
 - Donald Barron’s question
 - Fetal and neonatal physiology – biomedical literature
 - Context: causes and prevention of neonatal lamb mortality

- Animal welfare science – from 1990
 - General – definitions, reasoning, applications
 - Welfare status assessment and management
 - Pain assessment and alleviation
Introduction:

• Galloping colts - 1967
 - Donald Barron’s question
 - Fetal and neonatal physiology – biomedical literature
 - Context: causes and prevention of neonatal lamb mortality

• Animal welfare science – from 1990
 - General – definitions, reasoning, applications
 - Welfare status assessment and management
 - Pain assessment and alleviation

• Questions about fetal ‘suffering’ – from 1999
 - ‘Drowning’ in amniotic fluid after slaughter of the dam
 - Feeling pain during calf serum collection at slaughter
 - Question: Can fetuses experience unpleasant sensations?
Major Points

• Introduction
 – Galloping colts – 1967
 – Animal welfare science – from 1990
 – Questions about fetal ‘suffering’ – from 1999

• Fetal feelings – i.e. ‘experienced’ sensations
 – The requirement for both sentience and consciousness

• Neurological development in relation to birth
 – Normal patterns – EEG and critical connections
 – Species differences – Exceptionally & Moderately Immature, Mature
 – What the evidence suggests
 – Fail-safe ‘emergency’ mechanism

• Reassuring regulations
 – Protecting fetal welfare during commercial slaughter of livestock

• Concluding remarks
Fetal feelings – i.e. ‘experienced’ sensations

- Welfare status is what the animal experiences
 - Internally generated sensations or ‘feelings’
 - Sensory scanning of animal’s functional state
 - Thirst, hunger, breathlessness, pain, nausea, malaise, sickness and others
 - Externally focused inputs via sensory modalities of sight, hearing, smell, taste, touch, thermal comfort, etc
Fetal feelings – i.e. ‘experienced’ sensations

• Welfare status is what the animal experiences
 - Internally generated sensations or ‘feelings’
 - Sensory scanning of animal’s functional state
 - Thirst, hunger, breathlessness, pain, nausea, malaise, sickness and others
 - Externally focused inputs via sensory modalities of sight, hearing, smell, taste, touch, thermal comfort, etc

• Pre-requisites of good welfare and suffering
 - Sentience
 - Phylogenetic status – not relevant, mammals only
 - The developmental stage of the neural apparatus
 - Must have achieved sufficient functional maturity
 - Consciousness
 - The brain must be in a state of consciousness
 - Experiencing sensations depends on consciousness
Major Points

• Introduction
 – Galloping colts – 1967
 – Animal welfare science – from 1990
 – Questions about fetal ‘suffering’ – from 1999

• Fetal feelings – i.e. ‘experienced’ sensations
 – The requirement for both sentience and consciousness

• Neurological development in relation to birth
 – Normal patterns – EEG and critical connections
 – Species differences – Exceptionally & Moderately Immature, Mature
 – What the evidence suggests
 – Fail-safe ‘emergency’ mechanism

• Reassuring regulations
 – Protecting fetal welfare during commercial slaughter of livestock

• Concluding remarks
Neurological development in relation to birth:

- Normal patterns – EEG and critical connections

 - EEG – *six stages*
 1. Electrical silence - isoelectric
 2. Spikes punctuating isoelectric trace
 3. More sustained but intermittent activity

Wallaby Joeys

Percentage isoelectric EEG

Intermittent EEG epochs separated by silent periods – 30-second trace
Neurological development in relation to birth:

- Normal patterns – EEG and critical connections

- EEG – *six stages*
 1. Electrical silence - isoelectric
 2. Spikes punctuating isoelectric trace
 3. More sustained but intermittent activity
 4. Continuous mixed activity
 5. Differentiated REM-non-REM activity

90-day fetal sheep – 0.6

120-day fetal sheep – 0.8
Neurological development in relation to birth:

- Normal patterns – EEG and critical connections

 - EEG – *six stages*
 1. Electrical silence - isoelectric
 2. Spikes punctuating isoelectric trace
 3. More sustained but intermittent activity
 4. Continuous mixed activity
 5. Differentiated REM-non-REM activity
 5. *Essential thalamic-cortical connections*
 6. REM-non-REM sleep/wakefulness cycles
Neurological development in relation to birth:

- Normal patterns – EEG and critical connections

 - EEG – *six stages*
 1. Electrical silence - isoelectric
 2. Spikes punctuating isoelectric trace
 3. More sustained but intermittent activity
 4. Continuous mixed activity
 5. Differentiated REM-non-REM activity
 6. *Essential thalamic-cortical connections*

- *Stages 1 to 5: incompatible with consciousness*

- *Stage 6: consciousness is punctuated by sleep*
Neurological development in relation to birth:

- Species differences at birth
 - Neurologically exceptionally immature – stage 1
 - Marsupial joeys
 - First become conscious several months after birth
 - No capacity for consciousness before birth
Neurological development in relation to birth:

- **Species differences at birth**
 - **Neurologically exceptionally immature – stage 1**
 - Marsupial joeys
 - First become conscious several months after birth
 - *No capacity for consciousness before birth*

- **Neurologically moderately immature – stages 2-4**
 - Kittens, puppies, rabbit kits, rat & mouse pups
 - First become conscious 4-14 days after birth
 - *No capacity for consciousness before birth*
Neurological development in relation to birth

- **Species differences at birth**
 - Neurologically *exceptionally* immature – stage 1
 - Marsupial joeys
 - First become conscious *several months* after birth
 - No capacity for consciousness before birth
 - Neurologically *moderately* immature – stages 2-4
 - Kittens, puppies, rabbit kits, rat & mouse pups
 - First become conscious *4-14 days* after birth
 - No capacity for consciousness before birth
 - Neurologically *mature* – stage 6
 - Calves, fawns, foals, kids, lambs, piglets, guinea-pig pups
 - First become conscious *minutes to hours* after birth
 - Capacity for consciousness before birth
 - BUT unconsciousness maintained by in utero neuroinhibitors
Birth and neurological developmental stage

Three levels of neurological maturity at birth/hatching

<table>
<thead>
<tr>
<th>Exceptionally immature</th>
<th>Moderately immature</th>
<th>Mature</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG silence</td>
<td>Spikes-short epochs</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stages 2 & 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
<th>Stage 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammalian newborns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsupial joeys:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tammar wallaby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Virginia opossum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsupial joeys:</td>
<td>Kitten</td>
<td></td>
<td>Calf#</td>
<td></td>
</tr>
<tr>
<td>- Tammar wallaby</td>
<td>Puppy</td>
<td>Fawn#</td>
<td>Foal#</td>
<td></td>
</tr>
<tr>
<td>- Virginia opossum</td>
<td>Mouse pup</td>
<td>Foal#</td>
<td>Kid#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rat pup</td>
<td></td>
<td>Lamb#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rabbit kit</td>
<td></td>
<td>Piglet#</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guinea-pig pups#</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human infant#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avian hatchlings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigeon</td>
<td>Domestic chicken</td>
</tr>
</tbody>
</table>

REM = rapid-eye-movement sleep

In utero neuroinhibitors operate until birth
Neurological development in relation to birth

- Neurologically *exceptionally immature* – stage 1

 ![Day 6](image1) ![Day 70](image2) ![Day 185](image3) ![Day 220](image4)

- Neurologically *moderately immature* – stages 2-4

 ![Day 3](image5)
Neurological development in relation to birth

- Neurologically mature – stage 6

Lamb birth sequence

0 min

< 1 min

15-25 min

~3 min

7-10 min
Conclusions about fetal/newborn unconsciousness

- The evidence suggests that:
 - No *fetus* is conscious before or during birth
 - Fetal welfare therefore cannot be compromised
Conclusions about fetal/newborn unconsciousness

- The evidence suggests that:
 - No *fetus* is conscious before or during birth
 - Fetal welfare therefore cannot be compromised
 - The *newborn* cannot experience unpleasant sensations until after the onset of consciousness
 - Depending on the species, this occurs after months, days or minutes-hours
 - Thereafter, noxious sensations can be experienced and welfare can be compromised
Conclusions about fetal/newborn unconsciousness

• The evidence suggests that:
 - No *fetus* is conscious before or during birth
 - Fetal welfare therefore cannot be compromised
 - The *newborn* cannot experience unpleasant sensations until after the onset of consciousness
 - Depending on the species, this occurs after months, days or minutes-hours
 - Thereafter, noxious sensations can be experienced and welfare can be compromised

• Some people take the opposite view:
 - That the fetus *is* conscious and *can* suffer before birth
 - That fetal welfare therefore *can* be compromised
 - Some mothers, midwives, pediatricians, veterinarians, animal ethics committee members
 - Also, some researchers studying fetal pain

• So, what about humane slaughter of livestock fetuses?
Fail-safe ‘emergency’ mechanism protects the welfare of livestock fetuses:

- Oxygen supply to the fetal brain is the key
 - The fetus has no control over placental O_2 supply
 - Fetal brain is vulnerable to O_2 shortage
 - Three mechanisms minimise fetal brain O_2 use:
 1. *Fetal unconsciousness* – lowers brain O_2 use by 10-40% – provides a background ‘safety margin’
 2. *Switch towards the non-REM state* just before and during labour reduces brain O_2 use – prepares for likely O_2 shortages during labour
 3. *Emergency shut-down* of cerebral cortical electrical activity in response to cessation of placental O_2 supply
Fail-safe ‘emergency’ mechanism protects the welfare of livestock fetuses:

- **Emergency shut-down of cortical electrical activity:**
 - Umbilical cord occlusion *stops* O_2 *supply* to the fetus
 - EEG becomes *isoelectric* well within 60-90 seconds
 - *This is completely incompatible with consciousness*

- When the O_2 supply is restored cortical function returns
- Within 5-6 minutes – without major neuronal damage
- After >10 minutes – with progressively greater damage
Major Points

- **Introduction**
 - Galloping colts – 1967
 - Animal welfare science – from 1990
 - Questions about fetal ‘suffering’ – from 1999

- **Fetal feelings – i.e. ‘experienced’ sensations**
 - The requirement for both sentience and consciousness

- **Neurological development in relation to birth**
 - Normal patterns – EEG and critical connections
 - Species differences – Exceptionally & Moderately Immature, Mature
 - What the evidence suggests
 - Fail-safe ‘emergency’ mechanism

- **Reassuring regulations**
 - Protecting fetal welfare during commercial slaughter of livestock

- **Concluding remarks**
Reassuring regulations for livestock slaughter:

• Cord occlusion simulates maternal neck-cut slaughter
 - Neck-cut causes a catastrophic loss of maternal blood
 - Blood and O₂ supply to the uterus ceases rapidly
 - *Placental O₂ supply to the fetus ceases*
 - Fetal cerebral cortical ‘shut-down’ occurs within 60-90 sec
 - ‘Shut-down’ will continue if O₂ supply is NOT restored
 - *The isoelectric EEG guarantees unconsciousness*
 - Such fetuses CANNOT experience any sensations
 - *Breathlessness* while ‘drowning’
 - *Pain* due to needling while collecting fetal serum

• This scientific understanding underpins regulations
Reassuring regulations for livestock slaughter:

• The regulations are designed to ensure that:
 - Fetuses are not removed too soon after death of the dam
 - Fetuses never successfully breathe air
 - The fetal EEG will remain isoelectric until fetal death

• OIE fetal slaughter regulations:
 - No living fetus should be removed from the uterus sooner than 5 minutes after the maternal neck or chest cut.
 - The successful onset of breathing should be prevented, e.g. by clamping the trachea.
 - Or the fetus should be left in the uterus for 15-20 minutes – anoxic brain damage would then be substantial.
 - Or the fetus should be left in the uterus until it is dead.
 - If there is any doubt about consciousness, the fetus should be killed with a suitably sized captive bolt, or a blow to the head with a suitable blunt instrument.
Major Points

- **Introduction**
 - Galloping colts – 1967
 - Animal welfare science – from 1990
 - Questions about fetal ‘suffering’ – from 1999

- **Fetal feelings – i.e. ‘experienced’ sensations**
 - The requirement for both sentience and consciousness

- **Neurological development in relation to birth**
 - Normal patterns – EEG and critical connections
 - Species differences – Exceptionally & Moderately Immature, Mature
 - What the evidence suggests
 - Fail-safe ‘emergency’ mechanism

- **Reassuring regulations**
 - Protecting fetal welfare during commercial slaughter of livestock

- **Concluding remarks**
Concluding remarks – multi-disciplinarity

• ‘Non-AWS’ *fetal-neonatal* sources:
 - Most papers were in the biomedical literature.
 - Fetal sheep have been the preferred ‘model’ for human research for at least 50 years.
 - The behavioural, veterinary or AWS literature provided virtually no relevant information.
 - *Highlights the value of multi-disciplinary perspectives.*
Concluding remarks – multi-disciplinarity

• ‘Non-AWS’ fetal-neonatal sources:
 - Most papers were in the biomedical literature.
 - Fetal sheep have been the preferred ‘model’ for human research for at least 50 years.
 - The behavioural, veterinary or AWS literature provided virtually no relevant information.
 - *Highlights the value of multi-disciplinary perspectives.*

• *Animal welfare and pain sources:*
 - Animal behaviour, veterinary or AWS literature provided most relevant information, as well as human pain literature.
 - *This too required multi-disciplinary perspectives.*
Concluding remarks – multi-disciplinarity

• ‘Non-AWS’ *fetal-neonatal* sources:
 - Most papers were in the biomedical literature.
 - Fetal sheep have been the preferred ‘model’ for human research for at least 50 years.
 - The behavioural, veterinary or AWS literature provided virtually no relevant information.
 - *Highlights the value of multi-disciplinary perspectives.*

• *Animal welfare and pain* sources:
 - Animal behaviour, veterinary or AWS literature provided most relevant information, as well as human pain literature.
 - *This too required multi-disciplinary perspectives.*

• *A fortuitous coincidence of interests:*
 - The combination of fetal-neonatal, animal welfare science and pain physiology interests provided this outcome.
Concluding remarks – multi-disciplinarity

- ‘Non-AWS’ fetal-neonatal sources:
 - Provided most direct information for framing and justifying the regulations or guidelines for the humane management of livestock fetuses during slaughter of their dams.
 - This is probably quite unusual.
Concluding remarks – multi-disciplinarity

• ‘Non-AWS’ fetal-neonatal sources:
 - Provided most direct information for framing and justifying the regulations or guidelines for the humane management of livestock fetuses during slaughter of their dams.
 - This is probably quite unusual.

• AWS, behaviour, veterinary and pain sources:
 - In contrast, there is purposefully commissioned animal-based research. It provides direct scientific bases for codes of practice, welfare codes or regulations – e.g. those on the management of painful husbandry practices in livestock.
 - This would be a much more usual pattern.
Concluding remarks – multi-disciplinarity

• ‘Non-AWS’ *fetal-neonatal* sources:
 - Provided most *direct information* for framing and justifying the regulations or guidelines for the *humane management* of livestock fetuses during slaughter of their dams.
 - *This is probably quite unusual.*

• *AWS, behaviour, veterinary and pain* sources:
 - In contrast, there is *purposefully commissioned animal-based research*. It provides direct scientific bases for codes of practice, welfare codes or regulations – e.g. those on the management of painful husbandry practices in livestock.
 - *This would be a much more usual pattern.*

• *Science is not the only determinant:*
 - Practical experience, common sense, ease of use, available technology, clarity of instructions, costs and other factors must also be considered.